Skip to main navigation menu Skip to main content Skip to site footer

Articles

Vol. 1 (2025): Philogram Journal for Advanced Philosophical Research

An Interpretation of the Divide, Analytical Philosophy and Continental Philosophy

Submitted
5 August 2025
Published
01-12-2025

Abstract

The paper proposes the interpretative hypothesis that Analytical philosophy and Continental philosophy are two divergent epigones of Hegel’s unrealized project for an alternative logic, which in the 1930sindependently born as intuitionist mathematical logic. This perspective is supported by the interpretive patterns concerning the nature of these two schools and their main representatives, Quine and Heidegger, respectively. In conclusion a consideration about history of philosophy and its new perspective is added.

References

  1. Birkhoff G., von Neumann J. (1936), "The logic of Quantum Mechanics", Annals of Mathematics, 37, pp. 823-843.
  2. Drago A. (1990), “History of the relationships Chemistry-Mathematics”, Fresenius J. Anal. Chem. 337, pp. 220-224. “Erratum”, ibidem, 340 (1991), p. 787.
  3. Drago A. (2009), “The Differentiating Role Played by Double Negation in Linking Language to the World, Editors Volker A. Munz Klaus Puhl Joseph Wang, Language and World, Papers of the 32nd International Wittgenstein Symposium August 9 – 15, 2009, Kirchberg am Wechsel, The Austrian Ludwig Wittgenstein Society, Volume XVII, pp. 102-104.
  4. Drago A. (2007), “La maniera di ragionare di Lavoisier, Dalton ed Avogadro durante la nascita della teoria chimica”, Rend. Acc. Naz, delle Scienze detta dei XL, Memorie di Sci. Fisiche e Nat., ser. V, 31, pt. Il, tomo II, 2007, pp. 189-201.
  5. Drago A. (2010), “Dialectics in Cusanus (1401-1464), Lanza del Vasto (1901-1981) and beyond”, Epistemologia, 33:305-328.
  6. Drago A. (2021), An Intuitionist Reasoning Upon Formal Intuitionist Logic: Logical Analysis of Kolmogorov’s 1932 Paper”. Logica Universalis 15(4),537-552.
  7. Drago A. (2023), “New relationships among science, philosophy and religious studies”, Riv. Ital. Filos. Linguaggio, 17(1): 147-162.
  8. Drago A. and Oliva R. (1999), “Atomism and the reasoning by non-classical logic”, HYLE, 5, pp. 45-55.
  9. Drago A. and Venezia A: (2007), “Popper's falsificationism interpreted by non-classical Logic”, Epistemologia 30, 235-264.
  10. Dummett M. (1977), Elements of Intuitionism, Oxford: Claredon P.
  11. Foucault M. (1986), The Use of Pleasure, New York: Vintage.
  12. Haak S. (1974), Deviant Logic, Cambridge: Cambridge U.P.
  13. Heyting A. (1930), “The formal rules of Intuitionist logic”, in Mancosu P. (1998), From Hilbert to Goedel, Oxford: Oxford U.P., pp. 311-325.
  14. Internet Encyclopedia of Philosophy: “Analytic Philosophy”, https://iep.utm.edu/analytic-philosophy/.
  15. Kolmogorov A.N. (1932), “Zur Deutung der Intuitionistische Logik. Mathematische Zeitschrift”, 35, 58-65 (Engl. Transl. In Mancosu P.(1998), op.cit., pp. 328-334)..
  16. Jones K. (2009), Analytic versus Continental Philosophy”, Philosophy Now, n. 74.
  17. Lejewski C. (1974), "Popper's theory of formal or deductive inference", in P.A. Schilpp (ed.): The Philosophy of Karl Popper, The Library of Living Philosophers, La Salle, IL: Open Court, pp. 632-670.
  18. Levy N. (2003), “Analytic and Continental Philosophy: Explaining the Differences”, Metaphilosophy, 34(3):284-304.
  19. Lewis C.I. (1914) “The Calculus of Strict Implication”, Mind, Vol. 23, No. 90, pp. 240-247.
  20. Mou B. (2013), “On Daoist approach to the issue of being in engaging Quinean and Heideggerian approaches”, in Mou B. and Tieszen R. (eds.), Constructive Engagement of Analytic and Continental Approaches in Philosophy, Leiden: Brill, pp. 289-319
  21. Prawitz D. and Melmnaas P.-E. (1968), "A survey of some connections between classical, intuitionistic and minimal logic", in Schmidt A., Schuette K. and Thiele H.J. (eds.): Contributions to Mathematical Logic, Amsterdam: North-Holland, pp. 215-229.
  22. Tennant N. (1990), Natural Logic. Edinburgh U.P., Edinburgh, p. 57.
  23. Troelstra A. and van Dalen D. (1988), Constructivism in Mathematics. Amsterdam: North-Holland, vol. 1, p. 49 ff..

Similar Articles

You may also start an advanced similarity search for this article.